#include <spectrumsolver.h>
|
typedef double(* | tfuncIC )(double sigma2, int p, int t) |
|
|
void | exec (const std::vector< std::complex< double > > &memin, std::vector< std::complex< double > > &memout, int t0, double tol, FFT::twindowfunc windowfunc, double windowlength) throw (XKameError&) |
| Perform spectrum analysis.
|
|
const std::vector
< std::complex< double > > & | ifft () const |
|
const std::vector< std::pair
< double, double > > & | peaks () const |
|
virtual bool | isFT () const |
|
|
static double | icAIC (double loglikelifood, int k, int n) |
|
static double | icAICc (double loglikelifood, int k, int n) |
|
static double | icHQ (double loglikelifood, int k, int n) |
|
static double | icMDL (double loglikelifood, int k, int n) |
|
static double | windowLength (int tdlen, int t0, double windowlength) |
|
static void | window (int t, int t0, FFT::twindowfunc windowfunc, double windowlength, std::vector< double > &window) |
| Create a window waveform.
|
|
|
virtual void | genSpectrum (const std::vector< std::complex< double > > &memin, std::vector< std::complex< double > > &memout, int t0, double tol, FFT::twindowfunc windowfunc, double windowlength)=0 |
|
virtual bool | hasWeighting () const |
| If false, perform rectangular windowing before solver process.
|
|
double | numberOfNoises (const std::vector< std::complex< double > > &memin) |
|
void | genIFFT (const std::vector< std::complex< double > > &wavein) |
|
double | lspe (const std::vector< std::complex< double > > &wavein, int origin, const std::vector< double > &psd, std::vector< std::complex< double > > &waveout, double tol, bool powfit, FFT::twindowfunc windowfunc) |
|
double | stepLSPE (const std::vector< std::complex< double > > &wavein, int origin, const std::vector< double > &psd, std::vector< std::complex< double > > &waveout, bool powfit, double &coeff, const std::vector< double > &weight) |
|
int | fftlen () const |
|
void | autoCorrelation (const std::vector< std::complex< double > > &wave, std::vector< std::complex< double > > &corr) |
|
|
std::vector< std::complex
< double > > | m_ifft |
|
std::vector< std::pair< double,
double > > | m_peaks |
|
shared_ptr< FFT > | m_fftN |
|
shared_ptr< FFT > | m_ifftN |
|
shared_ptr< FFT > | m_fftRX |
| For autocorrelation.
|
|
shared_ptr< FFT > | m_ifftRX |
|
Base class for spectrum solvers.
- See Also
- FFTSolver, MEMStrict, CompositeSpectrumSolver, FreqEstimation, MemBurg, YuleWalkerAR
Definition at line 27 of file spectrumsolver.h.
double SpectrumSolver::icAIC |
( |
double |
loglikelifood, |
|
|
int |
k, |
|
|
int |
n |
|
) |
| |
|
static |
Akachi's information criterion.
- Parameters
-
loglikelifood | ln(L). |
k | # of parameters. |
n | # of samples. |
Definition at line 23 of file spectrumsolver.cpp.
double SpectrumSolver::icAICc |
( |
double |
loglikelifood, |
|
|
int |
k, |
|
|
int |
n |
|
) |
| |
|
static |
double SpectrumSolver::icHQ |
( |
double |
loglikelifood, |
|
|
int |
k, |
|
|
int |
n |
|
) |
| |
|
static |
double SpectrumSolver::icMDL |
( |
double |
loglikelifood, |
|
|
int |
k, |
|
|
int |
n |
|
) |
| |
|
static |
double SpectrumSolver::lspe |
( |
const std::vector< std::complex< double > > & |
wavein, |
|
|
int |
origin, |
|
|
const std::vector< double > & |
psd, |
|
|
std::vector< std::complex< double > > & |
waveout, |
|
|
double |
tol, |
|
|
bool |
powfit, |
|
|
FFT::twindowfunc |
windowfunc |
|
) |
| |
|
protected |
double SpectrumSolver::numberOfNoises |
( |
const std::vector< std::complex< double > > & |
memin | ) |
|
|
protected |
- Returns
- estimated number of effective (noisy) data points.
Definition at line 203 of file spectrumsolver.cpp.
const std::vector<std::pair<double, double> >& SpectrumSolver::peaks |
( |
| ) |
const |
|
inline |
double SpectrumSolver::stepLSPE |
( |
const std::vector< std::complex< double > > & |
wavein, |
|
|
int |
origin, |
|
|
const std::vector< double > & |
psd, |
|
|
std::vector< std::complex< double > > & |
waveout, |
|
|
bool |
powfit, |
|
|
double & |
coeff, |
|
|
const std::vector< double > & |
weight |
|
) |
| |
|
protected |
The documentation for this class was generated from the following files: